

FIVE ESTUARIES OFFSHORE WIND FARM

VOLUME 6, PART 5, ANNEX 6.2.1: LANDFALL IMPACT PILING MODELLING (TRACKED)

Application Reference: EN010115 Document Number: 6.5.6.2.1

Revision:

Pursuant to: Deadline 6
Eco-Doc Number: 005107531-02
Date: February 2025

COPYRIGHT © Five Estuaries Wind Farm Ltd

All pre-existing rights reserved.

In preparation of this document Five Estuaries Wind Farm Ltd has made reasonable efforts to ensure that the content is accurate, up to date and complete for purpose.

Revision	Date	Status/Reason for Issue	Originator	Checked	Approved
В	Feb-25	Deadline 6	Subacoustech	GoBe	VEOWFL

Five Estuaries: Landfall impact piling modelling

Richard Barham

27 August 2023

Subacoustech Environmental Report No.

P283R0201P283R0202

Document No.	Date	Written	Approved	Distribution
P283R0201	27/08/2023	R Barham	T Mason	GoBe (W Hutchinson)

This report is a controlled document. The report documentation page lists the version number, record of changes, referencing information, abstract and other documentation details.

Five Estuaries: Landfall impact piling modelling

List of contents

1	Intro	duction	<u></u> 1
	1.1	Modelling methodology	<u></u> 3
2	Mod	elling results	<u></u> 3
	2.1	Predicted noise levels at 750 m	<u></u> 4
	2.2	Marine mammal criteria	<u></u> 5
	2.3	Fish criteria	<u></u> 6
3	Sun	nmary and conclusions	<u></u> 8
R	eferenc	es	<u></u> g
R	eport de	ocumentation page	10

1 Introduction

Five Estuaries (VE) is a proposed offshore wind farm situated in the southern North Sea, an extension to the existing Galloper Offshore Wind Farm. As part of the Environmental Impact Assessment (EIA) process, Subacoustech Environmental Ltd. have undertaken detailed underwater noise modelling and analysis in relation to marine mammals and fish at the VE site.

This report presents additional modelling of impact piling for cofferdam construction at the landfall location on the Essex coast between Holland-on-Sea and Frinton-on-Sea. Although it is expected that vibro-piling will be used for these activities, impact piling has been presented here to represent a worst case with regards to noise as this has not been ruled out.

Figure 1-1 shows the landfall area as well as the representative modelling location used for this study.

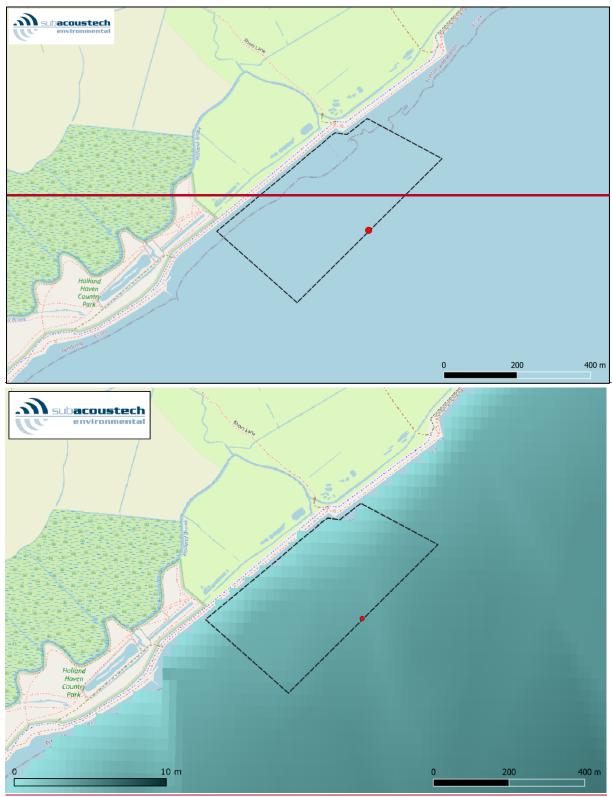


Figure 1-1 Overview map showing the VE landfall area on the Essex coast and the modelling location used in this study at high tide (shown as a red point).

This report presents an assessment of the potential underwater noise during impact piling activity during construction activities at landfall. Detailed background information on underwater noise metrics, criteria

and the modelling approach are presented in Subacoustech Environmental's previous VE report (4.6.2_VE_PEIR_Volume4_Annex6.2_UWN_V0.5.

1.1 Modelling methodology

Impact piling noise from cofferdam installation has been modelled using Subacoustech Environmental's INSPIRE noise modelling software (v5.1) at the location shown in Figure 1-1 (51.8149°N, 001.2337°E). As the furthest from land and therefore deepest location, this represents the location likely to lead to the largest potential impact ranges. A single scenario has been modelled, considering the installation of 750 mm wide Larssen sheet piles, measuring 20 m in length using the assumed ramp up give in Table 1-1. It is possible that eight piles could be sequentially installed in a 24-hour period, this has been considered in the modelling.

Table 1-1 Summary of the soft start and ramp up scenario used for the impact piling modelling

Sheet pile	60 kJ	Ramp-up	300 kJ					
Number of strikes	100	800	1,200					
Duration	10 minutes	20 minutes	30 minutes					
Blow rate	10 bl/min	40 b	bl/min					
	1 pile: 2,100 strikes, 1 hour duration per pile							
	8 piles: 16,800 strikes	, 8 hours total duration						

Both high and low tides have been considered for this modelling using tidal data from the Walton-onthe-Naze:

- Mean High Water Springs (MHWS): 4.6 m above lowest astronomical tide (LAT), a depth of 5.3 m; and
- Mean Low Water Springs (MLWS): 0.1 m above LAT, a depth of 0.8 m.

The unweighted source levels used for modelling are given in Table 1-2.

Table 1-2 Summary of the unweighted source levels used for modelling.

Source levels	Sheet pile (MHWS) 750 mm wide, 300 kJ blow energy	Sheet pile (MLWS) 750 mm wide, 300 kJ blow energy
Unweighted SPL _{peak}	224.0 dB re 1 μPa @ 1 m	216.7 dB re 1 μPa @ 1 m
Unweighted SELss	194.2 dB re 1 μPa²s @ 1 m	171.0 dB re 1 μPa²s @ 1 m

Modelling has been undertaken for the Southall *et al.* (2019) noise criteria for marine mammals and the Popper *et al.* (2014) criteria for fish and sea turtles, as per the previous modelling undertaken by Subacoustech Environmental for VE.

2 Modelling results

This section presents the modelled impact ranges for impact piling noise at landfall for cofferdam installation. The modelling shows that greater noise levels and impact ranges are predicted during the high tide (MHWS) scenario.

For the results presented throughout this report, any predicted ranges smaller than 50 m and areas less than 0.01 km² for single strike criteria, and predicted ranges smaller than 100 m and areas less than 0.1 km² for cumulative criteria, have not been presented. At ranges this close to the noise source, the modelling processes are unable to model to a sufficient level of accuracy due to complex acoustic effects present near the pile. These ranges are given as "less than" this limit (e.g., "<100 m").

subacoustech environmental

Five Estuaries: Landfall impact piling modelling

Also, due to the proximity to the coast of the modelling location, the majority of the minimum ranges are identical as this is determined by the distance to the coast.

2.1 Predicted noise levels at 750 m

In addition to the source levels presented in Table 1-2, it is useful to look at the predicted noise levels at a range of 750 m from the noise source as a "standard" distance comparable to other projects or situations. A summary of the modelled, unweighted levels at a range of 750 m are given in Table 2-1, considering the transect with the greatest noise level while piling using the maximum hammer blow energy.

Table 2-1 Summary of the maximum predicted unweighted SPL_{peak} and SEL_{ss} noise levels at a range of 750 m from the impact piling noise sources.

Predicted level	Sheet pile (MHWS)	Sheet pile (MLWS)
at 750 m range	750 mm wide, 300 kJ blow energy	750 mm wide, 300 kJ blow energy
Unweighted SPL _{peak}	171.4 dB re 1 μPa	153.8 dB re 1 μPa
Unweighted SELss	142.3 dB re 1 μPa ² s	109.4 dB re 1 μPa ² s

2.2 Marine mammal criteria

Table 2-2 to Table 2-6 present the impact piling modelling results in terms of the Southall *et al.* (2019) and Southall *et al.* (2007) criteria for marine mammals. All PTS and TTS ranges are predicted to be less than 50 m for SPL_{peak} criteria and less than 100 m for SEL_{cum} criteria. This is due to the energy in use for the hammer and the shallow water in which the installation will take place.

Table 2-2 Summary of the unweighted SPL_{peak} impact ranges for marine mammals using the Southall et al. (2019) impulsive criteria.

South	hall et al. (2019)		Sheet pile	(MHWS)		Sheet pile (MLWS)				
Unw	eighted SPL _{peak}	Area	Max	Min	Mean	Area	Max	Min	Mean	
	(Impulsive)	Alea	range	range	range	Alea	range	range	range	
	LF (219 dB)	< 0.01 km ²	< 50 m	< 50 m	< 50 m	< 0.01 km ²	< 50 m	< 50 m	< 50 m	
PTS	HF (230 dB)	< 0.01 km ²	< 50 m	< 50 m	< 50 m	< 0.01 km ²	< 50 m	< 50 m	< 50 m	
FIS	VHF (202 dB)	< 0.01 km ²	< 50 m	< 50 m	< 50 m	< 0.01 km ²	< 50 m	< 50 m	< 50 m	
	PCW (218 dB)	< 0.01 km ²	< 50 m	< 50 m	< 50 m	< 0.01 km ²	< 50 m	< 50 m	< 50 m	
	LF (213 dB)	< 0.01 km ²	< 50 m	< 50 m	< 50 m	< 0.01 km ²	< 50 m	< 50 m	< 50 m	
TTC	HF (224 dB)	< 0.01 km ²	< 50 m	< 50 m	< 50 m	< 0.01 km ²	< 50 m	< 50 m	< 50 m	
TTS	VHF (196 dB)	< 0.01 km ²	< 50 m	< 50 m	< 50 m	< 0.01 km ²	< 50 m	< 50 m	< 50 m	
	PCW (212 dB)	< 0.01 km ²	< 50 m	< 50 m	< 50 m	< 0.01 km ²	< 50 m	< 50 m	< 50 m	

Table 2-3 Summary of the weighted SEL_{cum} impact ranges for marine mammals using the Southall et al. (2019) impulsive criteria assuming a fleeing animal for a single pile installation.

Southall et al. (2019)			Sheet pile	(MHWS)		Sheet pile (MLWS)			
We	eighted SEL _{cum}	Area	Max	Min	Mean	Area	Max	Min	Mean
	(Impulsive)	Alea	range	range	range		range	range	range
	LF (183 dB)	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m
PTS	HF (185 dB)	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m
FIS	VHF (155 dB)	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m
	PCW (185 dB)	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m
	LF (168 dB)	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m
TTS	HF (170 dB)	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m
113	VHF (140 dB)	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m
	PCW (170 dB)	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m

Table 2-4 Summary of the weighted SEL_{cum} impact ranges for marine mammals using the Southall et al. (2019) impulsive criteria assuming a fleeing animal for eight sequential pile installations.

	hall et al. (2019)		Sheet pile	(MHWS)	<u> </u>	Sheet pile (MLWS)				
We	eighted SEL _{cum}	Area	Max	Min	Mean	Area	Max	Min	Mean	
	(Impulsive)	Alea	range	range	range	Alea	range	range	range	
	LF (183 dB)	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m	
PTS	HF (185 dB)	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m	
FIS	VHF (155 dB)	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m	
	PCW (185 dB)	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m	
	LF (168 dB)	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m	
TTS	HF (170 dB)	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m	
113	VHF (140 dB)	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m	
	PCW (170 dB)	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m	

Table 2-5 Summary of the weighted SEL_{cum} impact ranges for marine mammals using the Southall et

al. (2019) non-impulsive criteria assuming a fleeing animal for a single pile installation.

Southall et al. (2019) Sheet pile (MHWS) Sheet pile (MHWS)

South	hall et al. (2019)		Sheet pile	(MHWS)		Sheet pile (MLWS)				
We	eighted SELcum	Area	Max	Min	Mean	Area	Max	Min	Mean	
(N	on-impulsive)	Alea	range	range	range	Alea	range	range	range	
	LF (199 dB)	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m	
PTS	HF (198 dB)	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m	
FIS	VHF (173 dB)	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m	
	PCW (201 dB)	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m	
	LF (179 dB)	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m	
TTS	HF (178 dB)	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m	
113	VHF (153 dB)	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m	
	PCW (181 dB)	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m	

Table 2-6 Summary of the weighted SEL_{cum} impact ranges for marine mammals using the Southall et al. (2019) non-impulsive criteria assuming a fleeing animal for eight sequential pile installations.

South	hall et al. (2019)		Sheet pile	(MHWS)		Sheet pile (MLWS)				
We	eighted SEL _{cum}	Area	Max	Min	Mean	Area	Max	Min	Mean	
(N	on-impulsive)	Alea	range	range	range	Alea	range	range	range	
	LF (199 dB)	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m	
PTS	HF (198 dB)	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m	
PIS	VHF (173 dB)	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m	
	PCW (201 dB)	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m	
	LF (179 dB)	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m	
TTS	HF (178 dB)	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m	
113	VHF (153 dB)	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m	
	PCW (181 dB)	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m	

2.3 Fish criteria

Five Estuaries: Landfall impact piling modelling

Table 2-7 and Table 2-9 present the impact piling modelling ranges in terms of the Popper *et al.* (2014) criteria for fish and sea turtles.

When considering a single sheet pile installation, the maximum TTS ranges (186 dB SEL_{cum} threshold) are predicted out to 160 m when considering a stationary receptor during the MHWS scenario, reducing to less than 100 m when a fleeing animal is assumed. For eight sequentially installed sheet piles, the maximum ranges increase to a maximum of 460 m for a stationary receptor during the MHWS scenario. However, it is an overly conservative case to consider that the eight sequentially installed piles will all occur at high tide as the tide will change throughout the day.

Five Estuaries: Landfall impact piling modelling

Table 2-7 Summary of the of the unweighted SPL_{peak} impact ranges for fish using the Popper et al. (2014) pile driving criteria.

Popper et al. (2014)	;	Sheet pile (MHWS)				Sheet pile (MLWS)				
Unweighted SPL _{peak}	Area	Max	Min	Mean	Aron	Max	Min	Mean		
(Pile driving)	Area	range range range Area		Area	range	range	range			
213 dB	< 0.01 km ²	< 50 m	< 50 m	< 50 m	< 0.01 km ²	< 50 m	< 50 m	< 50 m		
207 dB	< 0.01 km ²	< 50 m	< 50 m	< 50 m	< 0.01 km ²	< 50 m	< 50 m	< 50 m		

Table 2-8 Summary of the unweighted SEL_{cum} impact ranges for fish using the Popper et al. (2014) pile driving criteria assuming both a fleeing and stationary animal for a single pile installation.

Southall et al. (2019)		Sheet pile (MHWS)				Sheet pile (MLWS)			
Weighted SELcum		Area	Max	Min	Mean	Area	Max	Min	Mean
(Impulsive)			range	range	range		range	range	range
Fleeing (1.5 ms ⁻¹)	219 dB	$< 0.1 \text{ km}^2$	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m
	216 dB	$< 0.1 \text{ km}^2$	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m
	210 dB	$< 0.1 \text{ km}^2$	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m
	207 dB	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m
	203 dB	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m
	186 dB	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m
	219 dB	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m
nary s ⁻¹)	216 dB	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m
Stationar (0 ms ⁻¹)	210 dB	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m
	207 dB	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m
	203 dB	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m
	186 dB	$< 0.1 \text{ km}^2$	160 m	150 m	160 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m

Table 2-9 Summary of the unweighted SEL_{cum} impact ranges for fish using the Popper et al. (2014) pile driving criteria assuming both a fleeing and stationary animal for eight sequential pile installations.

Southall et al. (2019)		Sheet pile (MHWS)				Sheet pile (MLWS)			
Weighted SELcum (Impulsive)		Area	Max	Min	Mean	Area	Max	Min	Mean
		0.412	range	range	range	0.412	range	range	range
Fleeing (1.5 ms ⁻¹)	219 dB	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m
	216 dB	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m
	210 dB	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m
	207 dB	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m
	203 dB	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m
	186 dB	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m
	219 dB	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m
<u> </u>	216 dB	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m
Stationar (0 ms ⁻¹)	210 dB	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m
	207 dB	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m
	203 dB	< 0.1 km ²	< 100 m	< 100 m	< 100 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m
	186 dB	0.5 km ²	460 m	240 m	390 m	< 0.1 km ²	< 100 m	< 100 m	< 100 m

3 Summary and conclusions

Subacoustech Environmental have undertaken a study to assess the potential underwater noise and its effects during impact piling activity at landfall for VE.

The modelling results show that noise levels and ranges for potential impacts will be greater during high tide conditions. All ranges at which PTS and TTS impacts could occur for marine mammals are expected to be less than 100 m. For fish, the maximum TTS range (186 dB SEL_{cum} threshold) is predicted to be 160 m for a single pile, increasing to 460 m when 8 sequentially installed piles are considered. These fish impact ranges consider a stationary receptor at high tide, the predicted ranges reduce to less than 100 m when a fleeing animal, or low tide, is assumed.

The outputs of this modelling, in conjunction with Subacoustech Environmental's previous modelling report for VE, have been used to inform analysis of the impacts of underwater noise on marine mammals and fish in their respective assessments.

References

- Popper A N, Hawkins A D, Fay R R, Mann D A, Bartol S, Carlson T J, Coombs S, Ellison W T, Gentry R L, Halvorsen M B, Løkkeborg S, Rogers P H, Southall B L, Zeddies D G, Tavolga W N (2014). Sound exposure guidelines for Fishes and Sea Turtles. Springer Briefs in Oceanography, DOI 10.1007/978-3-319-06659-2.
- Southall B L, Finneran J J, Reichmuth C, Nachtigall P E, Ketten D R, Bowles A E, Ellison W T, Nowacek D P, Tyack P L (2019). Marine mammal noise exposure criteria: Updated scientific recommendations for residual hearing effects. Aquatic Mammals 2019, 45 (20, 125-232) DOI 10.1578/AM.45.2.2019.125.

Report documentation page

- This is a controlled document.
- Additional copies should be obtained through the Subacoustech Environmental librarian.
- If copied locally, each document must be marked "Uncontrolled copy".
- Amendment shall be by whole document replacement.
- Proposals for change to this document should be forwarded to Subacoustech Environmental.

Document No.	Draft	Date	Details of change
P283R0200	01	23/08/2023	Initial writing and internal review
P283R0201	-	27/08/2023	Issue to client
P283R0202	Ξ	26/07/2024	Inclusion of bathymetry and modelling depths

Originator's current report number	P283R0201P283R0202
Originator's name and location	R Barham; Subacoustech Environmental Ltd.
Contract number and period covered	P283; July 2023 – August 2023 July 2024
Sponsor's name and location	William Hutchinson; GoBe Consultants
Report classification and caveats in use	[Status]
Date written	August 2023
Pagination	Cover + i + 10
References	2
Report title	Five Estuaries: Landfall impact piling modelling
Translation/Conference details (if translation,	
give foreign title/if part of a conference, give	
conference particulars)	
Title classification	Unclassified
Author(s)	Richard Barham
Descriptors/keywords	
Abstract	
Abstract classification	Unclassified; Unlimited distribution

